
Skin XML schema documentation version 2.0
Seeing samples is a good way how to understand PocketGamepad xml file. All skins are possible to
export from application. Open skins (Menu/Skins), long tap desired item and tap Export. Exported
file has extension pgpad, which is zip file. Just rename pgpad to zip.

Element: PocketGamepadSkin
PocketGamepadSkin is a root element

XML instance representation:

<PocketGamepadSkin>
 <GeneralInfo>…</GeneralInfo> [1]
 <Colors>…</Colors> [0..1]
 <Screen>…</Screen> [1..*]
</PocketGamepadSkin>

Element: GeneralInfo
GeneralInfo is an element, which represents basic information about the skin.

minXMLParserVersion Minimum Pocket Gamepad parser version. If parser has lower value, skin
must not work. Using the last version of Pocket Gamepad guarantees the
last version of XML parser.

versionCode Version of skin, number from 1 till … When it is created new version of
skin, this number must be increased

versionName Version of skin which is displayed to users
name Name of the skin
description Description (long name)
controlling Notes about controlling the game

Each skin can be designed for several screen aspect ratios (minimum is one). Application will find and
use the closest possible (depend of device screen aspect ratio). For each defined DesignedScreen
element you must also define the Screen element (parent PocketGamepadSkin) with the same
aspect ratio.

XML instance representation:

<GeneralInfo
 minXMLParserVersion="integer" [1]
 versionCode="integer" [1]
 versionName="string" [1]
 name="string" [1]
 description="string" [0..1]
 controlling="string" [0..1]
 <Author>…</Author> [0..*]
 <Game>…</Game> [0..*]
 <DesignedScreen>…</DesignedScreen> [1..*]
</GeneralInfo>

Element: Author
Information about author of the skin.

name Name of the author
www Web page. Must begin with http:// or https://
email Author’s email address

XML instance representation:

<Author
 name="string" [1]
 www="string" [0..1]
 email="string" [0..1]
</Author>

Element: Game
Information about the game which is skin designed for.

name Name of the game
www Web page of the game. Must begin with http:// or https://

XML instance representation:

<Game
 name="string" [1]
 www="string" [0..1]
</Game>

Element: DesignedScreen
Information about the screen aspect ratio. For each DesignedScreen element must be created
Screen element (parent PocketGamepadSkin).

aspectRatio Can be: 4:3, 3:2, 8:5, 5:3 or 16:9

XML instance representation:

<DesignedScreen
 aspectRatio="16:9" [1]
</DesignedScreen>

Element: Colors
Each color used for skin must be defined in this element.

XML instance representation:

<Colors>
 <ColorDefinition>…</ColorDefinition> [1..*]
<Colors/>

Element: ColorDefinition
Color represents by Red, Green, Blue and Alpha channel. Each color must have two attributes:
1. name
2. rgba_int or rgba_float

Name Unique name of the color
rgba_int “red_int green_int blue_int alpha_int”

Each int can be [0..255]
Sample for dark green color “0 128 0 255”

rgba_float “red_float green_float blue_float alpha_float”
Each float can be [0..1]
Sample for crimson color “0.86 0.08 0.22 1.0”

XML instance representation:

<ColorDefinition
 name="string" [1]
 rgba_int="string" or rgba_float="string" [1]
</ColorDefinition>

Element: Screen
This element contains all information for displaying the skin. Application will choose only one Screen
(the selector is aspectRatio) if xml contains more Screens.

aspectRatio It indicates for which aspect ratio is element Screen designed. Can be:
4:3, 3:2, 8:5, 5:3 or 16:9. Every file can contain elements Screen for each
aspect ratio. One aspect ratio can be used only once at the file. If the
device aspect ratio is not defined, application will use the closest.

designedWidth Width in pixels
designedHeight Height in pixels

All Screen elements use the coordinate system, where:
Left bottom pixel has coordinates 0,0
Right top pixel has coordinates designedWidth-1, designedHeight-1

Sample:
Screen1: aspectRatio="16:9"

designedWidth="1920“
designedHeight="1080"
Point A: 960,540

Screen2: aspectRatio="16:9"
designedWidth="640“
designedHeight="360"
Point B: 320,270

Point A from screen 1 will be displayed at the same position like Point B from the screen 2.

If designedWidth > designedHeight it is landscape mode
If designedWidth < designedHeight it is portrait mode

XML instance representation:

<Screen
 aspectRatio="string" [1]
 designedWidth="string" [1]
 designedHeight="string" [1]
 <Style>…</Style> [0..*]
 <Tab>…</Tab> [1..*]
</Screen>

Element: Style
Application enables creating and using styles (design of elements which could be displayed).
Any style can inherit style from another (parent) style. Parent style must be defined before child
style. If your style inherit from another (parent) style, you can use all parent attribute(s), add new
attribute(s) or redefine some of parent attribute(s).

Naming convention: When some style inherits form another, its name is parent + “.” + xxx.

Example of style name:
<Style name="Button" . . .
<Style name="Button.4corners" parent="Button" . . .
<Style name="Button.4corners.Arrow" parent="Button.4corners" . . .

Each style must contain at least one Appearance element. Only one Appearance element is usually
used for non-interactive elements and its state="idle". If you want to create style for interactive
elements like buttons (Polygon or Circle), you must add 2 Appearance elements. First with
state="idle" and the second with state="pressed"

name Style name
parent Parent name (it must be defined before)

XML instance representation:

<Style
 name="string" [1]
 parent="string" [0..1]
 <Appearance>…</Appearance> [1..2]
</Style>

Element: Appearance
Appearance of the displayed element

state Can be "idle" or "pressed"
"idle" is used for displaying not pressed object state
"pressed" is used for displaying pressed object state

XML instance representation:

<Appearance
 state="string" [1]
 <Shape>…</Shape> [0..1]
 <Texture>…</ Texture> [0..1]
</Appearance>

There must be defined Shape or Texture or both.

Element: Shape
Definition of the shape

cornerRadiusList In case using Shape for polygon object there is defined radiuses of the
polygon corners. If polygon has more corners than is defined here, it will
be repeated. If you want to have the same all corner radiuses,
cornerRadiusList must have only one value. Example:
cornerRadiusList="10"
In case of more corner values, values must be split by space.
cornerRadiusList="10 20 20 10"

color Solid color of the object. Name of color defined in Colors
colorList In case using Shape for polygon object, it is possible to define color for

each corner and display color gradient. There must be defined color for
each corner. Example for triangle:
colorList="buttonDark buttonDark buttonlight"

In case using Shape for circle object there must be defined two colors.
Example:
colorList="buttonLight buttonDark". At this case there must be
defined also angle and percentOfRadius. Look bellow.
The first color is the point defined by angle and percentOfRadius. The
second color is the circle border.

angle [0..359]
percentOfRadius [0..100]

XML instance representation:

<Shape
 cornerRadiusList ="int list" [0..1]
 color="string" [0..1]
 colorList="string list" [0..1]
 angle="string" [0..1]
 percentOfRadius ="int" [0..1]
 <Stroke>…</Stroke> [0..1]
</Shape>

Element: Stroke
Definition of the stroke

Width Width of the stroke
Color Solid color of the stroke. Name of color defined in Colors

XML instance representation:

<Stroke
 width="int" [1]
 color="string" [1]
</Stroke>

Element: Texture
Definition of the object texture.

Textures must be saved in png files. Width and height of the png pictures must be power of 2 (2, 4, 8,
16, 32, 64, 128, 512, 1024, etc.). Texture files must be saved at the same folder as xml file. Textures

uses the alpha channel.

Texture example, size 1024x1024 pixels

Displaying the horn:

<Appearance state="idle">
 <Texture fileName="CrashDrive.png" wrap="fitToCenter" left="860" right="1010" bottom="0" top="150"/>
</Appearance>
<Appearance state="pressed">
 <Texture fileName="CrashDrive.png" wrap="fitToCenter" left="860" right="1010" bottom="150" top="300"/>
</Appearance>

filename Name of source file name. If you use inbuilt texture (for example for
displaying system buttons) the name of the texture consists of @ and
texture name without extension (example filename="
@buttons_texture").

Wrap coverBoundaryRect – texture fills whole object boundary rect. Aspect
ratio of the texture is not maintained.
fitToCenter – texture fills object boundary rect as big as possible and
maintain the texture aspect ratio.

Left Left coordinate of the texture file
Right Right coordinate of the texture file
Bottom Bottom coordinate of the texture file
Top Top coordinate of the texture file
Padding Set all paddings from object boundary rect. Bigger padding value, texture

is smaller and vice versa.
paddingLeft Padding left, it rewrites padding
paddingRight Padding right, it rewrites padding
paddingBottom Padding bottom, it rewrites padding
paddingTop Padding top, it rewrites padding

XML instance representation:

<Texture
 fileName="string" [1]
 wrap="string" [1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]
 padding="int" [0..1] />
 paddingLeft="int" [0..1] />
 paddingRight="int" [0..1] />
 paddingBottom="int" [0..1] />
 paddingTop="int" [0..1] />
</Texture>

Element: Tab
Each screen can have one or more tabs. It is possible to switch among the tabs by
jumpTo="tab_name" command. All objects which are displayed at the device screen are defined
inside Tab.

If you want to the tab sends joystick inputs based on the device attitude, you must define
ControlAxis element inside Tab. In case of multi Tab in one Screen, you must define ControlAxis
in all Tabs.

You can also define more axes for one attitude change (pitch or roll). Typical using it is for car racing
game where you use pitch for braking and accelerating.
minUsablePos="0", maxUsablePos="1" for braking
minUsablePos="-1", maxUsablePos="0" for accelerating
For more information see explanation of ControlAxis element.

Name Name of the tab (must be unique inside the Screen element)
backgroundColor Background color name (defined in Colors)
numLock If defined, application switch-on/off the NumLock. If not defined,

application do not change NumLock.
Possible values: on or off

sendingWithoutConnection If true, Tab can send UDP commands without establishing
connection. Default value is false.

XML instance representation:

<Tab
 name="string" [1]
 backgroundColor="string" [1]
 numLock="string" {“on“, “off“} [0..1]
 sendingWithoutConnection ="boolean" {“true“, “false“} [0..1]
 <ControlAxis>…</ControlAxis> [0..*]
 <Polygon>…</Polygon> [0..*]
 <Circle>…</Circle> [0..*]
 <SeekBar>…</SeekBar> [0..*]
 <AttitudeIndicator>…</AttitudeIndicator> [0..*]
</Tab>

Element: ControlAxis
ControlAxis element is used for defining and simulating joystick inputs. For each axis must be
defined one ControlAxis element.

Name Name of the axis. Can be 1, 2, 3, 4, 5, 6, 7 or 8.
Axis called 1 is usually used at most games for roll inputs
Axis called 2 is usually used at most games for pitch inputs

Attitude pitch for pitch inputs
roll for roll inputs
No default value

minUsablePos Max possible deflection of each device is defined in range [-1..1]. You can
use only part of this range defined by minUsablePos and maxUsablePos.

Roll left is positive [1…0]
Roll right is negative [0..-1]
Pitch back, to you, pulling is positive [1…0]
Pitch front, from you (pushing) is negative [0..-1]
Default values = -1.0

maxUsablePos Described above.
Default values = 1.0

maxLeftValue
maxPitchBackValue

If the device reaches max left or back pitch deflection defined by
minUsablePos and maxUsablePos the application sends this value.
Default value = 0

maxRightValue
maxPitchFrontValue

If the device reaches max right or front pitch deflection defined by
minUsablePos and maxUsablePos the application sends this value.
Default value = 32767

XML instance representation for roll inputs:

<ControlAxis
 name="string" [1]
 minUsablePos="float" [0..1]
 maxUsablePos="float" [0..1]
 maxLeftValue="int" [0..1]
 maxRightValue="int" [0..1]
 attitude="string" [1]
</ControlAxis>

XML instance representation for pitch inputs:

<ControlAxis
 name="string" [1]
 minUsablePos="float" [0..1]
 maxUsablePos="float" [0..1]
 maxPitchBackValue="int" [0..1]
 maxPitchFrontValue="int" [0..1]
 attitude="pitch" [1]
</ControlAxis>

Element: Polygon
This element is used for displaying polygons, typically buttons.
- The look of polygon is defined at the Appearance element
- If the polygon is active (clickable="true" or there are defined Attitude element) you must
define at least one but usually two Action elements. The first what to do when polygon is clicked:
type="actionDown" and when polygon is released: type="actionUp".
It is also necessary to define two Appearance elements. The first one with state="idle" and the
second one with state="pressed".
- If you want to element be attitude sensitive, you must define the Attitude element.

tag Must be unique in the Tab element.
style Style of polygon. Every items of style can be rewritten in the Appearance

element
coordinates Coordinates of the polygon. Points must be split by space. Example:

coordinates="1200,350 1850,350 1850,600 1200,600"
tessellate true or false

If the polygon is concave, it must be set to true.
Default value = false

rectTouchTest true or false
If polygon is a rectangle, you can set this attribute to true. It can save
some energy.
Default value = false

clickable true or false
If the polygon is a touchable button clickable="true"
Default value = false

visibility true or false
For hiding this object visibility="false"
Default value = true

XML instance representation:

<Polygon
 tag="string" [1]
 style="string" [0..1]
 coordinates="list of points" [1]
 tessellate="true/false" [0..1]
 rectTouchTest="true/false" [0..1]
 clickable="true/false" [0..1]
 visibility="true/false" [0..1]
 <Action>…</Action> [0..2]
 <Appearance>…</Appearance> [0..2]
 <Attitude>…</Attitude> [0..1]
</Polygon>

Element: Circle
This element is used for displaying circles, ellipses or their sectors.
- The look of polygon is defined at the Appearance element
- If the polygon is active (clickable or attitude active) you must define at least one but usually two
Action elements. The first what to do when polygon is clicked: type="actionDown" and when
polygon is released: type="actionUp".

It is also necessary to define two Appearance elements. The first one with state="idle" and the
second one with state="pressed".
- If you want to element be attitude sensitive, you must define the Attitude element.

This element can di displayed like circle, if there is defined radius or like ellipse if there are defined
radiusX and radiusY.

If you want to display only sector you must define startAngle and endAngle.

tag Must be unique in the Tab element.
style Style of polygon. Every items of style can be rewritten in the Appearance

element
center Circle (ellipse) center

center="600,500"
radius Radius of the circle
radiusX Radius for the X axis of the ellipse
radiusY Radius for the Y axis of the ellipse
startAngle In case of sector, start angle for drawing
endAngle In case of sector, start end for drawing
Clickable true or false

If the polygon is a touchable button clickable ="true"
Default value = false

Visibility true or false
For hiding this object visibility="false"
Default value = true

XML instance representation:

<Circle
 tag="string" [1]
 style="string" [0..1]
 center="point" [1]
 radius="int" [0..1]
 radiusX="int" [0..1]
 radiusY="int" [0..1]
 startAngle="float" [0..1]
 endAngle="float" [0..1]
 clickable="true/false" [0..1]
 visibility="true/false" [0..1]
 <Action>…</Action> [0..2]
 <Appearance>…</Appearance> [0..2]
 <Attitude>…</Attitude> [0..1]
</Circle>

Element: AttitudeIndicator
This is a passive object, which shows the device attitude. The dimensions are defined
by left, right, bottom and top position.
Object contains 3 objects: Background, Knob and Axis.
If you want to Knob stay inside the Background, you must define Knob’s padding.
Knob’s center must have coordinates 0,0. Its displaying is relative to the

AttitudeIndicator center.

tag Must be unique in the Tab element.
left Left position
Right Right position
bottom Bottom position
top Top position

XML instance representation:

<AttitudeIndicator
 tag="string" [1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]
 <Background>…</Background> [0..1]
 <Knob>…</Knob> [1]
 <Axis>…</Axis> [0..1]
</AttitudeIndicator>

Element: SeekBar
Seek bar is an active object. You can use it
for setting joystick axis – joystick based
games. Typically usage is for engine
throttle, wing flaps, aircraft ruder etc.
Orientation can be vertical or
horizontal.

The dimensions are defined by left,
right, bottom and top position.

Object consists from 3 objects:
Background, Knob and Axis.

If you want to Knob stay inside the Background, you must define Knob’s padding. Knob’s center must
have coordinates 0,0. Its displaying is relative to the SeekBar center.

Max deflection values of the SeekBar are:
left: -1, right: +1
bottom: -1, top: +1

tag Must be unique in the Tab element.
left Left position
Right Right position
Bottom Bottom position
Top Top position
Clickable true or false

Default value = true
orientation vertical or horizontal

Default value = vertical
snapToScale true or false

If true true the Knob can stay only at the predefined positions at the
Scale element.
Default value = false

defKnobPos This is a default Knob position when skin launched. Value can be in the
range [-1..1]
Default value = 0 (center)

returnToDefaultSpeed At this version only 0 and 1 is allowed.
1 means, when user release the Knob, Knob returns to the defKnobPos.
Default value = 0 (no returning when releasing the Knob)

XML instance representation:

<SeekBar
 tag="string" [1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]
 clickable="true/false" [0..1]
 orientation="vertical/horizontal" [0..1]
 snapToScale="true/false" [0..1]
 defKnobPos="float" [0..1]
 <Background>…</Background> [0..1]
 <Knob>…</Knob> [1]
 <Scale>…</Scale> [0..1] Scale must be the last element.
</SeekBar>

Element: TouchPad
This is a rectangle object, which can be used like laptop touch pad for the PC mouse movement. This
object contains only one object: Background

tag Must be unique in the Tab element.
left Left position
Right Right position
bottom Bottom position
top Top position
clickable true or false Default value = true
mmToPixels One millimeter on touch pad = mmToPixels pixels on PC screen

Default value is 8
rotation In case that x axis is not from left to right side and y axis is not from

bottom to top use this. Possible value (clockwise degrees) can be: 90,
180, 270

XML instance representation:

<TouchPad
 tag="string" [1]
 clickable="true/false" [0..1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]

 mmToPixels="float" [0..1]
 rotation="90,180,270" [1]
 <Background>…</Background> [1]
</TouchPad>

Element: PointingStick
This is a circle object, which can be used like laptop pointing stick (track point) for the PC mouse
movement. This object contains only one object: Background

tag Must be unique in the Tab element.
center Center of the PointingStick, center="600,500"
radius Right position
clickable true or false Default value = true
mmToPixels One millimeter on moving from touch down position = mmToPixels

pixels on PC screen each 20 ms. Default value is 1
rotation In case that x axis is not from left to right side and y axis is not from

bottom to top use this. Possible value (clockwise degrees) can be: 90,
180, 270

XML instance representation:

<PointingStick
 tag="string" [1]
 clickable="true/false" [0..1]
 center="point" [1]
 radius="int" [1]
 mmToPixels="float" [0..1]
 rotation="90,180,270" [1]
 <Background>…</Background> [1]
</PointingStick>

Element: MouseScrollWheel
This is a rectangle object, which can be used like mouse scroll whell. This object contains only one
object: Background

tag Must be unique in the Tab element.
left Left position
right Right position
bottom Bottom position
top Top position
clickable true or false Default value = true
mmToPoints One millimeter on touch pad = mmToPoints points

Default value is 50
rotation In case that x axis is not from left to right side and y axis is not from

bottom to top use this. Possible value (clockwise degrees) can be: 90,
180, 270

stepX If you want to use scroll in X axis, it must be greater than zero. If there is
for example stepX="3", application can send scroll X values: 3, 6, 9 etc.

stepY If you want to use scroll in Y axis, it must be greater than zero.

XML instance representation:

<MouseScrollWheel
 tag="string" [1]
 clickable="true/false" [0..1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]
 mmToPoints="float" [0..1]
 rotation="90,180,270" [1]
 stepX="int" [0..1]
 stepY="int" [0..1]
 <Background>…</Background> [1]
</MouseScrollWheel>

Element: HatSwitch
This is an object, which replaces joystick hat switch (POV).
Element contains 3 elements: Background, DeadZone, Knob. All elements can contain only element
Circle. They cannot contain element Polygon.
Radius of the elements Background and DeadZone are defined in HatSwitch attributes.

tag Must be unique in the Tab element.
clickable true or false Default value = true
Name Name of the hat switch. Can be 1, 2, 3, and 4
center Circle (ellipse) center

center="600,500"
radius Radius of the circle
radiusX Radius for the X axis of the ellipse
radiusY Radius for the Y axis of the ellipse
deadZoneRadius Radius of the dead zone If user keep finger in this area,

hat switch is in its neutral position
deadZoneRadiusX Radius for the X axis of the dead zone ellipse
deadZoneRadiusY Radius for the Y axis of the dead zone ellipse
type 4directions or 8directions. 4directions

<HatSwitch
 tag="string" [1]
 clickable="true/false" [0..1]
 name="1/2/3/4" [1]
 center="point" [1]
 radius="int" [0..1]
 radiusX="int" [0..1]
 radiusY="int" [0..1]
 deadZoneRadius="int" [0..1]
 deadZoneRadiusX="int" [0..1]
 deadZoneRadiusY="int" [0..1]
 <Background>…</Background> [1]
 <DeadZone>…</DeadZone> [1]
 <Knob>…</Knob> [1]
</HatSwitch>

Sample:

<HatSwitch
 tag="hat_switch_1"
 center="463,630"
 radius="182"
 deadZoneRadius="45"
 name="1"
 type="8directions"
 clickable="true" >
 <Background>
 <Circle style="buttonStyle" />
 </Background>
 <DeadZone>
 <Circle style="buttonStyle " />
 </DeadZone>
 <Knob padding="35" >
 <Circle style="buttonStyle.seekBarButton" radius="30" />
 </Knob>
</HatSwitch>

Element: PingIndicator
This is an object, which shows response between smart phone and PC server. Quality of connection is
displayed like a bar, which can has green, yellow or red color. Size of the bar is also depended of the
connection quality.
Element contains element Bar and can contain object Background.

Tag Must be unique in the Tab element.
Left Left position
Right Right position
Bottom Bottom position
Top Top position
clickable true or false Default value = true
orienatation horizontal or vertical Default value = vertical. In case of vertical,

bar changes its height (depended of the connection quality). In case of
horizontal, bar changes its width.

XML instance representation:

<PingIndicator
 tag="string" [1]
 clickable="true/false" [0..1]
 left="int" [1]
 right="int" [1]
 bottom="int" [1]
 top="int" [1]
 orientation="horizontal/vertical" [1]
 <Background>…</Background> [0..1]
 <Bar>…</Bar> [1]
</PingIndicator>

Element: Bar
This element is used for PingIndicator. It has only padding attributes.

Padding Set all paddings from object boundary rect. Bigger padding value, texture
is smaller and vice versa.

paddingLeft Padding left, it rewrites padding
paddingRight Padding right, it rewrites padding
paddingBottom Padding bottom, it rewrites padding
paddingTop Padding top, it rewrites padding

XML instance representation:

<Bar
 padding="int" [0..1] />
 paddingLeft="int" [0..1] />
 paddingRight="int" [0..1] />
 paddingBottom="int" [0..1] />
 paddingTop="int" [0..1] />
</Bar>

Element: Background
This element is used for AttitudeIndicator, SeekBar and TouchPad.
It has not any attributes, only Polygon.
XML instance representation:

<Background>
 <Polygon>…</Polygon> [1]
</Background>

Element: Knob
This element is used for AttitudeIndicator and SeekBar.

The knob is displayed relative to AttitudeIndicator and SeekBar, so its center should have
coordinates 0,0. If you want to Knob stay inside the Background, you must define Knob’s padding.

The Knob element can contain Polygon or Circle element.

padding Set all paddings from object boundary rect. Bigger padding value, texture
is smaller and vice versa.

paddingLeft Padding left, it rewrites padding
paddingRight Padding right, it rewrites padding
paddingBottom Padding bottom, it rewrites padding
paddingTop Padding top, it rewrites padding

XML instance representation:

<Knob
 padding="int" [0..1]
 paddingLeft="int" [0..1]

 paddingRight="int" [0..1]
 paddingBottom="int" [0..1]
 paddingTop="int" [0..1]
 <Polygon>…</Polygon> or <Circle>…</Circle> [1]
</Knob>

Element: Axis
This element is used for AttitudeIndicator.

The Polygon inside of the Axis must have tessellate="true" and must not have filled
coordinates. Coordinates of the Polygon will be calculated (based on AttitudeIndicator
dimensions, padding and width).

Example:
<Axis padding="40" width="5" >
 <Polygon style="buttonStyle.axis" tessellate="true" >
 </Polygon>
</Axis>

padding Set all paddings from parent object boundary rect.
paddingLeft Padding left, it rewrites padding
paddingRight Padding right, it rewrites padding
paddingBottom Padding bottom, it rewrites padding
paddingTop Padding top, it rewrites padding
width Width of axis

XML instance representation:

<Axis
 padding="int" [0..1]
 paddingLeft="int" [0..1]

 paddingRight="int" [0..1]
 paddingBottom="int" [0..1]
 paddingTop="int" [0..1]
 width="int" [1]
 <Polygon tessellate="true">…</Polygon> [1]
</Axis>

Element: Scale
This element is used for SeekBar.

The Polygon inside of the Scale must have tessellate="true" and must not have filled
coordinates. Coordinates of the Polygon will be calculated (based on SeekBar dimensions,
padding and width, scaleWidth, scaleLenght, scaleValues and Knob padding).

padding Set all paddings from parent object boundary rect.
paddingLeft Padding left, it rewrites padding
paddingRight Padding right, it rewrites padding
paddingBottom Padding bottom, it rewrites padding
paddingTop Padding top, it rewrites padding

axisWidth Width of the axis
scaleWidth Width of the scale
scaleLength Length of the scale
scaleValues List of values. Each value must be inside this interval [-1..1] and their

order must be from smallest to biggest.
scaleValues="-1,-0.5,0,0.50,1"

XML instance representation:

<Scale
 padding="int" [0..1]
 paddingLeft="int" [0..1]
 paddingRight="int" [0..1]
 paddingBottom="int" [0..1]
 paddingTop="int" [0..1]
 axisWidth="int" [1]
 scaleWidth="int" [0..1]
 scaleLength="int" [0..1]
 scaleValues="list of int" [0..1]
 <Polygon tessellate="true">…</Polygon> [1]
</Scale>

Element: Action
This element is used for making an action, when object is pressed (tapped) or when object is attitude
sensitive and the attitude makes this object pressed.

Action element has only one attribute -type. The type. Can be "pressedAction" or
"releasedAction"
- When object is pressed, application runs command(s) encapsulated in Action element where
type="pressedAction"
- When object is released, application runs command(s) encapsulated in Action element where
type="releasedAction"

Example of menu button Action:

You can see, there are only vibration and play sound at the pressedAction Action.
After releasing the button application runs releasedAction Action. In this Action there is the
systemCommand="system_menu for displaying options menu.

<Action type="pressedAction">
 <Command vibrateTime="50" soundFileName="button_click.wav" />
</Action>
<Action type="releasedAction">
 <Command systemCommand="system_menu" />
</Action>

Example of left arrow button Action:

When the button is pressed, application sends to the PC information, that left arrow is pressed and
keep it pressed. When button is released application sends at this moment to the PC information
that left arrow is released.

This is typically example for Action which is used for game controlling.
When using keyDown do not forget to use keyUp too.

<Action type="pressedAction">
 <Command keyDown="vk_arrow_left" />
</Action>
<Action type="releasedAction">
 <Command keyUp="vk_arrow_left" />
</Action>

Each Action element can contain one or more Command elements.

type Can be "pressedAction" or "releasedAction"

XML instance representation:

<Action
 type="string" [1]
 <Polygon>…</Polygon> [1..*]
</Action>

Element: Command
Command element is used for the execution of the commands and it is encapsulated at the Action
element.

keyDown Press a key. Key codes are bellow
keyUp Release a key. Key codes are bellow
systemCommand Execute a system command. Use this command at the Action, where

type="releasedAction"
"system_menu" displaying the options menu
"system_exit" close application
"system_connect" connect to the PC
"system_calibrate_accelerometer" calibrate accelerometer
"system_attitude_start_stop" keeping device attitude at the neutral
position (switch – start/stop)

jumpTo If Screen contains more Tabs, you can switch among them by this
command: jumpTo="tab_name", where tab_name is the name of the Tab
which will be displayed.

soundFileName File name of the mp3 or wav file. File must be located at the same
directory as skins.xml file.

vibrateTime Time in milliseconds
pulseControl Can be only "" or "constantAll". In case of

pulseControl="constantAll", the application sends pulses keyUp and
keyDown until user releases the object. The length of the pulses is
interval value.
Default value = ""

interval Time in milliseconds for pulseControl="constantAll"
Default value = "100"

link Open link in default browser.
link="http://www.funair.cz"

http://www.funair.cz

Example for machine gun, fire trigger is the space bar:
<Action type="pressedAction">
 <Command keyDown="vk_space_bar" pulseControl="constantAll" interval="80"/>
</Action>
<Action type="releasedAction">
 <Command keyUp="vk_space_bar" />
</Action>

XML instance representation:

<Command
 keyDown="string" [0..1]
 keyUp="string" [0..1]
 systemCommand="string" [0..1]
 soundFileName="string" [0..1]
 vibrateTime="int" [0..1]
 pulseControl="string" [1]
 interval="int" [0..1]
</Command>

Table of key codes:

no_input No inout

vk_lbutton Left mouse button

vk_rbutton Right mouse button

vk_cancel Control-break processing

vk_mbutton Middle mouse button (three-button mouse)

vk_xbutton1 X1 mouse button

vk_xbutton2 X2 mouse button

vk_back BACKSPACE key

vk_tab TAB key

vk_clear CLEAR key

vk_enter ENTER key

vk_shift SHIFT key

vk_ctrl CTRL key

vk_alt ALT key

vk_pause PAUSE key

vk_caps CAPS LOCK key

vk_kana IME Kana mode

vk_hangul IME Hangul mode

vk_junja IME Junja mode

vk_final IME final mode

vk_hanja IME Hanja mode

vk_kanji IME Kanji mode

vk_esc ESC key

vk_convert IME convert

vk_nonconvert IME nonconvert

vk_accept IME accept

vk_mode_change IME mode change request

vk_space_bar SPACEBAR

vk_page_up PAGE UP key

vk_page_down PAGE DOWN key

vk_end END key

vk_home HOME key

vk_arrow_up LEFT ARROW key

vk_arrow_down UP ARROW key

vk_arrow_left RIGHT ARROW key

vk_arrow_right DOWN ARROW key

vk_select SELECT key

vk_print PRINT key

vk_execute EXECUTE key

vk_print_screen PRINT SCREEN key

vk_ins INS key

vk_del DEL key

vk_help HELP key

vk_0 0 key

vk_1 1 key

vk_2 2 key

vk_3 3 key

vk_4 4 key

vk_5 5 key

vk_6 6 key

vk_7 7 key

vk_8 8 key

vk_9 9 key

vk_a A key

vk_b B key

vk_c C key

vk_d D key

vk_e E key

vk_f F key

vk_g G key

vk_h H key

vk_i I key

vk_j J key

vk_k K key

vk_l L key

vk_m M key

vk_n N key

vk_o O key

vk_p P key

vk_q Q key

vk_r R key

vk_s S key

vk_t T key

vk_u U key

vk_v V key

vk_w W key

vk_x X key

vk_y Y key

vk_z Z key

vk_lwin Left Windows key (Natural keyboard)

vk_rwin Right Windows key (Natural keyboard)

vk_apps Applications key (Natural keyboard)

vk_sleep Computer Sleep key

vk_numpad_0 Numeric keypad 0 key

vk_numpad_1 Numeric keypad 1 key

vk_numpad_2 Numeric keypad 2 key

vk_numpad_3 Numeric keypad 3 key

vk_numpad_4 Numeric keypad 4 key

vk_numpad_5 Numeric keypad 5 key

vk_numpad_6 Numeric keypad 6 key

vk_numpad_7 Numeric keypad 7 key

vk_numpad_8 Numeric keypad 8 key

vk_numpad_9 Numeric keypad 9 key

vk_multiply Multiply key

vk_add Add key

vk_separator Separator key

vk_subtract Subtract key

vk_decimal Decimal key

vk_divide Divide key

vk_f1 F1 key

vk_f2 F2 key

vk_f3 F3 key

vk_f4 F4 key

vk_f5 F5 key

vk_f6 F6 key

vk_f7 F7 key

vk_f8 F8 key

vk_f9 F9 key

vk_f10 F10 key

vk_f11 F11 key

vk_f12 F12 key

vk_f13 F13 key

vk_f14 F14 key

vk_f15 F15 key

vk_f16 F16 key

vk_f17 F17 key

vk_f18 F18 key

vk_f19 F19 key

vk_f20 F20 key

vk_f21 F21 key

vk_f22 F22 key

vk_f23 F23 key

vk_f24 F24 key

vk_num_lock NUM LOCK key

vk_scroll_lock SCROLL LOCK key

vk_lshift Left SHIFT key

vk_rshift Right SHIFT key

vk_lctrl Left CONTROL key

vk_rctrl Right CONTROL key

vk_lmenu Left MENU key

vk_rmenu Right MENU key

vk_browser_back Browser Back key

vk_browser_forward Browser Forward key

vk_browser_refresh Browser Refresh key

vk_browser_stop Browser Stop key

vk_browser_search Browser Search key

vk_browser_favorites Browser Favorites key

vk_browser_home Browser Start and Home key

vk_volume_mute Volume Mute key

vk_volume_down Volume Down key

vk_volume_up Volume Up key

vk_next_track Next Track key

vk_prev_track Previous Track key

vk_media_stop Stop Media key

vk_play_pause Play/Pause Media key

vk_start_mail Start Mail key

vk_select_media Select Media key

vk_start_app_1 Start Application 1 key

vk_start_app_2 Start Application 2 key

vk_oem_1 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the ';:' key

vk_oem_plus For any country/region; the '+' key

vk_oem_comma For any country/region; the '; ' key

vk_oem_minus For any country/region; the '-' key

vk_oem_period For any country/region; the '.' key

vk_oem_2 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the '/?' key

vk_oem_3 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the '`~' key

vk_oem_4 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the '[{' key

vk_oem_5 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the '\\|' ke

vk_oem_6 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard; the ']}' key

vk_oem_7 Used for miscellaneous characters; it can vary by keyboard. For the US standard keyboard;

 the 'single-quote/double-quote' key

vk_oem_8 Used for miscellaneous characters; it can vary by keyboard.

vk_oem_102 Either the angle bracket key or the backslash key on the RT 102-key keyboard

vk_process_key IME PROCESS key

vk_packet Used to pass Unicode characters as if they were keystrokes.

vk_attn Attn key

vk_crsel crsel key

vk_exsel ExSel key

vk_erof Erase EOF key

vk_play Play key

vk_zoom Zoom key

vk_pa1 PA1 key

vk_oem_clear Clear key

vk_arrow_up_mid UP ARROW key on the middle of extended keyvbard

vk_arrow_down_mid DOWN ARROW key on the middle of extended keyvbard

vk_arrow_left_mid LEFT ARROW key on the middle of extended keyvbard

vk_arrow_right_mid RIGHT ARROW key on the middle of extended keyvbard

vk_page_up_mid PAGE UP key on the middle of extended keyvbard

vk_page_down_mid PAGE DOWN key on the middle of extended keyvbard

vk_end_mid END key on the middle of extended keyvbard

vk_home_mid HOME key on the middle of extended keyvbard

vk_ins_mid INSERT key on the middle of extended keyvbard

vk_del_mid DELETE key on the middle of extended keyvbard

joystick_button_1 Joystick button 1

joystick_button_2 Joystick button 2

joystick_button_3 Joystick button 3

joystick_button_4 Joystick button 4

joystick_button_5 Joystick button 5

joystick_button_6 Joystick button 6

joystick_button_7 Joystick button 7

joystick_button_8 Joystick button 8

joystick_button_9 Joystick button 9

joystick_button_10 Joystick button 10

joystick_button_11 Joystick button 11

joystick_button_12 Joystick button 12

joystick_button_13 Joystick button 13

joystick_button_14 Joystick button 14

joystick_button_15 Joystick button 15

Element: Attitude
Attitude makes button attitude sensitive.

Attitude value is in neutral device position 0. When device is deflected value can be [-1..1] (at max
deflection positions). We will take into account here absolute value, so value can be only [0..1].
0 – neutral position
1 – max deflection position
The direction which element Attitude takes into account can be:
"rollLeft"
"rollRight"
"pitchBack"
"pitchFront"

There are is also possible do define threshold for setting object to the pressed state. The threshold
is defined like percent of the deflection. It can be [0..99].

Example of simple Attitude element. Object state will be set to the pressed state when device roll
left value exceeds 10% of maximum deflection:

<Attitude direction="rollLeft" threshold="10" />

Pulse controlling
There are also possible to use pulse controlling. Application offers two type of pulse controlling at the
Attitude element: constantInterval and constantPressedTime.

constantInterval
pressed pulse + released pulse = interval. There are defined: minTime and interval.
- When the device deflection cross the threshold from neutral position, it start sending pulses.
Pressed pulses has value minTime and released pulses has value interval-minTime.
- As deflection of the device is bigger, pressed pulses are longer and released pulses are shorter,
but still pressed pulse + released pulse = interval
- When the device reaches max deflection position, pulse controlling stopped and object is set to
pressed state.

Example:
<Attitude direction="rollLeft" threshold="7" pulseControl="constantInterval" minTime="10"
interval="100" exponent="0.7" />

constantPressedTime
pressed pulse time = pressedTime, relaased time can vary from minReleasedTime till
maxReleasedTime. It is depended of device deflection.

As you can in the sample, there is an
attribute called exponent. This attribute is
used for changing the deflection linearity
to curve. Attitude element do not use
directly deflection value but deflection
value powered by exponent.

direction "rollLeft" or "rollRight" or "pitchBack" or "pitchFront"
threshold Value [1..99]
exponent Value [0.3..1.5]

Default value = 1
pulseControl "constantInterval" or "constantPressedTime"
minTime Used for "constantInterval"

Minimum pressed time in milliseconds
interval Used for "constantInterval"

Whole length of the pressed + release time in in milliseconds
pressedTime Used for "constantPressedTime"

Pressed time in milliseconds

minReleasedTime Used for "constantPressedTime"
Minimum released time in milliseconds

maxReleasedTime Used for "constantPressedTime"
Maximum released time in milliseconds

XML instance representation:

<Attittude
 direction ="string" [1]
 threshold="float" [1]
 exponent="float" [0..1]
 pulseControl="string" [0..1]
 minTime="int" [0..1]
 interval="int" [0..1]
 pressedTime="int" [0..1]
 minReleasedTime="int" [0..1]
 maxReleasedTime="int" [0..1]
</ Attittude >

